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Abstract 

In this report, we study tolerance of semantic faults, one of the crucial issues in the Sim- 
plex™ architecture. In particular, we examine semantic faults that cause the controlled device 

to be unsafe (i.e., unable to carry out its normal operation) and eventually cause the device to 
become damaged. We also consider fault detection as a safety check. For the class of control 
systems operating around an equilibrium, the objective of maintaining the safety of the con- 
trolled device is formulated as a stabilization problem, and the safety of the controlled device 
is tested against the stability region of the device under the safety control. To establish the 
stability region, we apply the Lyapunov stability theory and linear matrix inequality (LMI) 
methodologies. It is shown that the stability region for a given safety controller as well as a 
safety control law can be systematically derived by LMI-based approaches. We conclude the 
report with a summary of the procedure for deriving the safety check and safety controller for 

a given application. 

TM Simplex is a trademark of Carnegie Mellon University. 
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1 Introduction 

With the rapid advancement of computing technology, the real-time control of physical de- 
vices has shifted from the analog domain to the digital domain, and control implementations 
have become an issue of software development. The so-called real-time computer-controlled 
systems have been seen in all practices, ranging from simple motion-control systems to large- 
scale, complex systems. Figure 1 shows a typical real-time computer-controlled system. 

A/D: 

Clock 
Computer 

Control Law 1 

Control Law n 

Control 
Selection fc/A 

Switching 
Box 

Physical Plant 1 
Switching 

Box 

Physical Plant n 

Figure 1:   A Typical Real-Time Computer-Controlled System 

In this system, the control unit is a computer, which consists of an analog to digital (A/D) 
converter, computing processes to generate control commands, a real-time clock, and a digi- 
tal to analog (D/A) converter. The control unit controls a group of physical plants. The real- 
time clock governs periodic sampling of the physical plants and control update. For each 
sample, measurements of the physical plants are fed to the control unit and are converted to 
digital signals through the A/D converter. Based on these measurements, control commands 
are computed, converted to analog signals through the D/A converter, and sent to the physical 
plants. Such a control update cycle is repeated at a prescribed sampling rate. For ease of ex- 
position, we have defined a controller as the software implementation of a control law, a 
physical plant (or plant) as the physical device to be controlled, and the overall system as the 
complete computer-controlled system. It is worthwhile to emphasize that Figure 1 presents 
only the basic configuration of a computer-controlled system. In a large-scale, complex sys- 
tem, the system shown in Figure 1 could be a subsystem, which is often referred to as an em- 

bedded system. 
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To take full advantage of advanced computing technology, most users want to be able to up- 
grade and evolve computer-controlled systems (especially large-scale, complex systems). In 
most cases, the ability to upgrade and evolve the overall system depends on the system's 

ability to adopt software changes. Since many systems are life critical, reliability and avail- 
ability are the essential requirements for these systems. To achieve high reliability and avail- 
ability when the system is upgrading or evolving, it is better to introduce software change in 
a safe and reliable fashion while the system is running. The Simplex™ architecture is de- 
signed for this purpose. By facilitating replacement units and analytically redundant control- 
lers, the Simplex architecture allows an upgraded controller to be introduced to the system 
online to control the plant under the protection of the so-called safety controller. The up- 
graded controller will continue to control the plant unless it contains faults that will cause the 
plant to malfunction. If this is the case, the safety controller will take over when the fault is 
detected. In this report, we study the issue of fault detection related to controller design and 
implementation, and the control switching logic for fault tolerance. In particular, we focus on 

establishing the safety region (to be defined precisely in subsequent sections) and propose a 
systematic approach for deriving the safety region and designing the safety controller. 

This report is organized as follows. In Section 2, we briefly review the Simplex architecture 
and formally define the notion of safety region. In Section 3, we establish the relation be- 
tween the safety region and the stability region for a class of control systems, and we define 
the safety control objective as stabilization of the plant. The stability analysis is carried out 
based on the Lyapunov stabilization theory. In Section 4, we formulate the stabilization con- 
trol as a linear matrix inequality (LMI)1 problem and solve the problem by using the existing 
approaches in LMI literature. In particular, we first derive the stability region for the closed- 
loop system under a given linear state feedback control, and then design a state feedback 
control and derive the corresponding stability region. Furthermore, we discuss the design of 
the state feedback control with certain prescribed performance requirements. In Section 5, we 
conclude the report with a summary of what has been done and the lessons learned. 

™ Simplex is a trademark of Carnegie Mellon University. 
A linear matrix inequality (LMI) is an inequality of a linear combination of matrix variables. For 

example, if A is an nxn constant matrix and Q is an nxn matrix variable, then the inequality 
ßAr + Aß<OisanLMI. 
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2 The Simplex Architecture and the Safety 
Region 

The Simplex architecture is a software technology that supports safe, reliable, online software 
upgrade. A detailed description of the technology is given in the Simplex Architecture Tuto- 

rial.2 Applications of the Simplex architecture in control systems are discussed in [Seto 98] 
and [Sha 97]. In this report, we will concentrate on the core functionality of the Simplex ar- 

chitecture—fault tolerance. 

The fault tolerance in the Simplex architecture is based on the concept of analytic redun- 
dancy. The analytically redundant controllers are designed to take into account the upgrade of 
control algorithms. In particular, a highly reliable controller, the safety controller, is designed 
to work with the upgraded controller, the implementation of the upgraded control algorithm. 
When the upgraded controller is introduced to the system, it will take control of the physical 
plant, and the dynamic behavior of the plant will be monitored. The upgraded controller will 
continue to control the physical plant if the behavior of the plant is satisfactory with respect 
to some prescribed criteria. If the plant does not behave in a desired way, the upgraded con- 
troller may contain bugs. As a result, the upgraded controller will be disabled, and the safety 
controller will take over control to maintain the operation of the overall system. Then the up- 
graded controller will be taken offline to be investigated and repaired. After it is fixed, the 
upgraded controller will be reinserted into the system and will take back control of the physi- 
cal plant. Such a cycle will be repeated until the reliability of the upgraded controller is the 
same as the reliability of the safety controller. In this way, we will have a highly reliable con- 

troller with the upgraded feature. 

The fault tolerance in the Simplex architecture consists of two parts: fault detection and fault 
recovery. As mentioned earlier, fault detection is related to the switching criteria used when 
the control of the physical plant is switched from the upgraded controller to the safety con- 
troller, while fault recovery concerns the safety control, which prevents the plant from failing. 
Apparently, different faults may involve different detection mechanisms. In the Simplex Ar- 

chitecture Tutorial, Peter Feiler (of the Software Engineering Institute) summarizes the types 
of faults that the Simplex architecture can handle (namely, timing faults, semantic faults, and 
resource-sharing faults). In this report, we will focus on the semantic faults, which are faults 
caused by incorrect design and implementation of the upgraded control algorithm. This type 

2 The Simplex Architecture Turorial is available from Peter Feiler of the Software Engineering 
Institute, Pittsburgh, Pennsylvania. 
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of fault will cause malfunctioning in the physical plant and cause the plant to enter an unsafe 
state from which no control will be able to bring the plant back to normal operation. Eventu- 
ally such a state will lead to physical damage. Therefore, the detection of semantic faults can 
be defined as the point where the upgrade controller is about to drive the physical plant into 
an unsafe state. In this sense, semantic fault detection becomes a safety check of the physical 
plant. Given that the safety controller will carry out the recovery once a semantic fault is de- 
tected, the safety check will depend on the control capability of the safety controller. In other 
words, for a given safety controller, the upgrade controller may contain a semantic fault if it 
is driving the physical plant to a state from which the safety controller can not bring the plant 
to normal operation. The safety of a physical plant with respect to the safety controller is de- 
fined precisely in [Seto 98], and we will review it in the remainder of this section. 

A formal description of plant safety is based on a mathematical model of the plant. Let 

xe Rn be the n-dimensional state of the physical plant, and ue Rm be the m-dimensional 

control input to the plant. The class of physical plants that we are interested in can be de- 
scribed by the following state equations: 

x = f(x,u(x,t)) with (1) 

state constraints: qx (x) < 0,..., q, (JC) < 0, (2) 

control constraints: /?,(«)<(),...,pr(u)<0. (3) 

Definition 2.1: Given the plant in Equation (1) with the constraints in Equations (2) and (3), 

1. A state x is admissible if it satisfies the constraints in Equation (2). The set of admissible 
states Fis defined as F = {* :ql (x) < Q,...,ql(x) < 0}. 

2. A control input u is admissible if it satisfies the constraints in Equation (3). The set of 
admissible controls G is defined as G = {«:px(u) ^ 0,..., pr(u) < O}. 

The control law u can be either open loop or state feedback. The state and control constraints 
together give the physical constraints to the physical system, which are usually treated as 
hard constraints. The physical constraints reflect operating limits for physical devices or other 
considerations such as lack of sufficient knowledge to operate the physical system outside of 
these boundaries. The safety of the system is concerned with the operation of the physical 
system without violating the physical constraints. Soft constraints may also exist, reflecting 
regions within which certain desired control performance can be maintained. Violations of 
these performance-related limits do not necessarily threaten the safety or viability of the 
physical system, however. In this report, we focus on the class of systems in Equations (1)- 

(3) with hard physical constraints. 

Example 2.1: Consider a simple mechanical system as shown in Figure 2. 
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Figure 2:   A Simple Mechanical System 

Let x, = x, x2 = x, u = FI m. Then the equations of motion are given by 

\Xi   — X-y 

X, =w 
subject to 

|*,|<*n 

H^F^/m 

The safety of the physical plant can be described with respect to a region in the state space 
where the safety controller can control the plant without violating the physical constraints. To 
characterize this region, we first define the operational region of a controller. 

Definition 2.2: Consider the plant in Equations (l)-(3). An operational region (OR) for a 
given control law w, which takes values from G, is defined as a subset OUQF such that un- 

der the control of u, the trajectory of the plant, starting from any state in Ou, will remain in 

Ou and satisfy the control objective of w. 

Since the safety controller is designed with the control objective of keeping the physical sys- 
tem from violating the physical constraints, the operational region of the safety controller can 
serve as a characterization of the plant safety. For instance, we could say that the plant is safe 
if its state is inside the OR of the safety controller; otherwise, it is unsafe. However, such a 
characterization can not be used as the switching criterion for the safety controller to take 
over. By the definition of the OR, it is clear that the control objective of a control law u may 
not be achieved if the physical plant starts from any state outside of the OR of u. Thus it 
would be too late for the safety controller to keep the plant from violating the physical con- 
straints once the state of the physical system is out of its OR. To prevent this, we define a re- 

stricted operational region (ROR) as follows: 

Definition 2.3: Given a plant in Equations (l)-(3), let 7 be the sampling period of the overall 
system and <pv(t0,x0,t) be the solution of Equation (1) at t>t0 with v the control input tak- 

ing values from G and (t0, x0) the initial condition. A restricted operational region of the 

control law u is defined as a subset Ru c Ou , 

Ru ={JC: xe Ou, jv(!0,x,t0 +T)e O„,Vr0 >0,Vv€ G}. 

Clearly, the restricted operational region contains all the states from which the state of the 
plant at the next sample will still be a point inside the corresponding operational region, no 
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matter what control is applied to the plant. Based on the definition of a restricted operational 
region, we define the notion of a safety region to characterize the safety of the plant. 

Definition 2.4: Consider a plant given in Equations (l)-(3). 

1. A safety region of a safety control law that takes values from G is defined as a restricted 
operational region of us (i.e., Ru ). In addition, if all the trajectories of the plant can be 

driven to a subset S QRUS by us, the safety region is said to be recoverable to S. 

2. A given state of the physical system is safe with respect to a safety control us if it is 

inside Ru . Otherwise it is unsafe. 

The safety region defined above may still not be conservative enough when there is one pe- 

riod delay in control implementation, in which case the control command computed based on 

the state at time t is sent to the physical plant at time t+T. To see this, we suppose that the 

state of the physical plant is detected to be out of the safety region at t. Although the safety 
controller will then be chosen to control the plant, its control command will not affect the 
physical plant until time t+T. At time t+T, however, the physical plant may have already 
evolved to a state out of the OR of the safety controller. Therefore, when the system involves 
one period delay in control implementation, the safety region of the safety controller us is 

further restricted as Ru = {c: xe 0Uj, $v(t0 ,x,t0+ 2T)e Ou , Vt0 > 0, Vve G\. 
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3 Lyapunov Stability Theory in Safety 
Control 

When the physical plant involves equilibria or steady state, the safety of the plant can be 
characterized by the stability of the plant. In this case, the safety controller can be designed to 
maintain the stability of the physical plant, and the safety region can be defined as the stabil- 
ity region of the plant under the safety control. In this section, we first briefly review the Ly- 
apunov stability theory, then formulate the safety-related issues as a stabilization problem. 
Most of the results in this section are well established in system and control literature, and we 
will simply state the results without proof. For details, readers can refer to a number of con- 

trol texts (e.g., [Luenberger 79]). 

3.1 Lyapunov Stability Theory 
Before getting into the details of the Lyapunov stability theory, we will first give some defi- 
nitions related to the stability of a dynamic system.3 Here we consider a class of continuous- 
time autonomous dynamic systems described by the following equation: 

x=f(x(t)),xeR" (4) 

Definition 3.1: An equilibrium of the system in Equation (4) is a state xe satisfying 

Definition 3.2: Suppose xe is an equilibrium state of a system in Equation (4). Then, 

1. jce is stable if for any £ > 0, there exists a S , 0 < S < £, such that for all x(t0) 

satisfying jjc(r0) — xe\ < 8, we have \x(t) - xe\ < e, \/t > t0. 

2. x, is asymptotically stable if it is stable and lim x(t) = xe. 

3. xe is unstable if it is not stable. 

Definition 3.3: A dynamic system with an equilibrium state xe is said to be (asymptotically) 

stable if xe is a (an asymptotically) stable equilibrium. A stability region S of the system is 

3 In this and subsequent sections, we will often use the word "system" to refer to a plant whose 
dynamics can be described by a set of differential equations. This should not be confused with the 
system that we defined previously with respect to the overall computer-controlled system. 
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defined as a region in the system state space from which the system trajectories will stay in- 
side a bounded region 2? 3 S. Furthermore, if B = S, S is called a restricted stability region. 

Definition 3.4: A function V(x) defined in a neighborhood U of an equilibrium xe of a system 

in Equation (4) is a Lyapunov function if it satisfies the following conditions: 

1. V is continuous and has continuous first order partial derivatives; 

2. xe is the unique minimum of V(x) with respect to all other states in U; 

3. The time derivative V (x) < 0, Vx e U . 

The above definitions have clear physical implications. The definition of equilibrium state 
implies that, once the system is at an equilibrium, it will stay there forever. For a dynamic 

system with a stable equilibrium, if the system starts close to the equilibrium, it will remain 

close to the equilibrium for all future time. Furthermore, if the equilibrium is asymptotically 

stable, the trajectory of the system will tend to the equilibrium as time increases. The stability 
region clearly characterizes the states, starting from which the system will be maintained 
close to the equilibrium, or will converge to the equilibrium. In safety control, we are inter- 
ested in the stability region with an asymptotically stable equilibrium. Finally, the definition 
of the Lyapunov function represents an analogy to the energy dissipation process with mini- 
mum energy at the equilibrium point. Figure 3 illustrates some of the definitions. 

Stable 

Asymptotically 

Unstable 

Equilibrium 

Figure3.a Illustration of stable, asymptotically 
stable, and unstable equilibrium. 

Figure 3.b Illustration of a 
Lyapunov function. 

Figure 3:   Illustrations of Stability-Related Definitions 

Theorem 3.1 (Lyapunov Stability Theorem): For a dynamic system in Equation (4) with an 
equilibrium xe, if there exists a Lyapunov function V(x) in a neighborhood U of xe, then the 

equilibrium xe is stable. Furthermore, if the time derivative V(x) is strictly negative every- 

where in U except xe, the equilibrium is asymptotically stable. 

The Lyapunov stability theorem addresses two issues. First, for any given dynamic system 
with an equilibrium, if a Lyapunov function can be constructed with respect to the equilib- 
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rium, then a conclusion of the system stability (i.e., the system is stable or asymptotically 
stable about the equilibrium) can be made. However, finding a Lyapunov function is a suffi- 
cient condition for system stability. In other words, it can not be concluded that the system is 
unstable if no Lyapunov function has yet been found. Second, a stability region can be ob- 
tained from a Lyapunov function. Suppose there exists a Lyapunov function V(x) in a neigh- 
borhood U of an equilibrium of a given system. Then the Lyapunov function theorem implies 
that there exists a positive constant c such that the region defined by S = {x:V(x)<c, xeU} 

is a stability region. It is worthwhile to note that the stability region defined in this way is not 
unique, and the set 5 with the largest c would give the largest stability region defined by this 
particular Lyapunov function. Since the time derivation of the Lyapunov function is always 
non-positive, the stability region defined by a Lyapunov function will be restricted. Thus, in 
the rest of this report, we will simply use stability region in the restricted sense when we de- 

rive the stability region from a Lyapunov function. 

As a subclass of the systems in Equation (4), linear time-invariant (LTI) systems are of spe- 
cial interest. Numerous results related to this class of systems have been well established. In 
the next few paragraphs, we will show how the Lyapunov stability theorem is applied to this 

type of system. This class of system is given by the following equation: 

x=Ax, xeR" (5> 

Theorem 3.2: An LTI system in Equation (5) is asymptotically stable at the equilibrium x = 0 
if and only if all the eigenvalues of matrix A are in the left half complex plane. 

Definition 3.5: A system in Equation (5) is quadratically stable at the equilibrium x = 0 if 

there exists a positive definite matrix P such that the quadratic function V(x) = xTPx has 

negative derivatives along all the trajectories of Equation (5). 

Theorem 3.3: A system in Equation (5) is asymptotically stable at the equilibrium* = 0 if 

and only if it is quadratically stable. 

The equivalence of asymptotic stability and quadratic stability enables the systematic study 
of Lyapunov stability in LTI systems. Specifically, the construction of a Lyapunov function is 
narrowed to quadratic forms; however, such quadratic Lyapunov functions always exist as 
long as the LTI system is asymptotically stable. In other words, the existence of a quadratic 
Lyapunov function is a necessary and sufficient condition for the system to be asymptotically 
stable. To apply the Lyapunov stability theorem in an LTI system, we consider a quadratic 

function of state variables given by V(x) = xTPx, where P is a positive definite matrix, de- 

noted by P > 0.4 We will show the conditions under which V(x) qualifies as a Lyapunov 
function, and therefore, the system is asymptotically stable. Apparently, any function V(x) 

4 Function V(x) is also called a positive definite function in the sense that V(x) > 0, Vx * 0 
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just defined satisfies Conditions 1 and 2 in the definition of a Lyapunov function. To check 
the third condition in the definition, we differentiate V(x) along the system trajectory, and 
obtain the following: 

V = xT(ATP + PA)x 

Then V < 0 implies that the matrix ATP + PA < 0. Hence we conclude that the system in 

Equation (5) is asymptotically stable if and only if there exist matrices P or Q = P~l such 

that 

P>0,    ATP + PA<0    or      ß>0,  QAT+AQ<0 (6) 

This is also known as a feasible problem in the context of LMI. Namely, the LMIs in Equa- 

tion (6) are feasible if there exist matrices P or Q = P'1 satisfying Equation (6). Moreover, a 

system in Equation (5) is asymptotically stable if and only if LMIs in Equation (6) are feasi- 
ble. This translates a stability problem to an LMI problem which can be solved by the inte- 
rior-point methodology. We will discuss the solutions to this type of LMI problem in Section 
4. 

3.2 A Stabilization Problem 
In the previous subsection, the Lyapunov stability theory was presented for a class of 
autonomous systems. In this subsection, we will apply the theory to control systems de- 
scribed in Equations (l)-(3). Specifically, we will concentrate on safety control since it is 
responsible for maintaining the safety of the physical plant, a crucial functionality in the 
Simplex architecture. As mentioned earlier, the safety of the physical plant can be character- 
ized by the stability of the plant when there is an equilibrium in the set of admissible states. 
Namely, guaranteeing the safety of a plant is equivalent to maintaining stability of the plant 
when the plant is operating around an equilibrium; thus, a safety region can be defined as a 
stability region. In this sense, the safety controller can be designed to stabilize the plant 
around the equilibrium, and a corresponding stability region is derived as the safety region. A 
formal problem statement is given below. Again, consider a class of plants 

x = f(x,u) with q{(x) < 0, i = 1 /, and pj(u) <0, j = l,...,r (7) 

Suppose there is a unique equilibrium (xe, ue) defined by 

f(xe,ue) = 0,  qi(xe)<0,  V/ = l,...,/,andp,(ue)<0, V/=l,...,r. 

Then the control objective is to design a state feedback control law u(x(t)) with 
u(x(t))e G, Vf > t0, such that the closed-loop system x = f(x,u(x)) is asymptotically stable 
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at xe. Furthermore, find the largest stability region of the closed-loop system contained in the 

set of admissible states. 

The problem posed is a stabilization problem, and the solution can be obtained from the Ly- 
apunov stability theory. With the control law designed in a state feedback form, we conclude 
that the closed-loop system is an autonomous system,5 and the Lyapunov stability theory in- 
troduced in previous subsection can be applied directly. It is not trivial, however, to solve a 
nonlinear stability problem. Except for a small subclass of systems (for instance, systems that 
can be linearized by state feedback), most of the problems do not have known analytic solu- 
tions. Even though there are analytic solutions to some of the problems, they may not be gen- 
eralized to other problems. To develop a systematic approach for control design and stability 
region derivation, we adopt the standard scheme to deal with nonlinear systems (namely, 
linearizing the nonlinear system at the equilibrium state), and then solve the problems with 
the linearized system. Specifically, let boc = x - xe, and 6u = u-ue. Then expanding function 

flx,u) by Taylor expansion and keeping only the first order terms, we get the following: 

Sx = A&c + B8u     where A = 
dx 

mdB = df(x'u) 

du 
u=ue 

are constant matrices. This transforms the nonlinear stabilization problem to a linear one. In 
the next section, we present several LMI-based approaches to solve the linear stability prob- 

lem. 

5 It is not necessary for the control law to be state feedback, and it could be an open control loop (for 
instance, a big-bang control). If the control depends on time explicitly, the controlled system is no 
longer autonomous. Nevertheless, in this report, we will focus on the class of system in Equation (7) 
with state feedback control law u(x). 
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4 Stability Analysis with LMI-Based 
Approaches 

In the previous section, we defined the safety control as the control that stabilizes the plant at 
the equilibrium and characterized the safety region as a stability region of the plant under 
safety control. In this section, we present LMI-based approaches to solve the linear stabiliza- 
tion problem. In particular, we first formulate the problem in an LMI form, and then solve it 
for two different cases: (1) Derive the stability region for a given safety controller, and (2) 
design the safety controller and derive the corresponding stability region. Finally, we discuss 
further improvements of the presented LMI approaches. The fundamental concept and basic 
schemes used in this section are described in detail by Boyd et al in [Boyd 94]. 

As we discussed earlier, the stabilization problem will be solved for a class of linear time- 
invariant systems, which could be linearized approximations of the physical plants. Suppose 
this class of LTI systems is described as follows: 

x = Ax + Bu with constraints: of x < 1,  i = 1,..., / and £>Jw < 1, j = 1,..., r (8) 

where xe R" is a vector of state variables, we Rm is a vector of control inputs, and 

ak G R" and bj e Rm are constant vectors. Clearly, the equilibrium state x=0 is a point in the 

set of admissible states. The control objective is to design a linear state feedback control in 
the form « = Kx such that the closed-loop system is in an asymptotically stable state at the 
equilibrium. Moreover, the controlled system will evolve in a feasible region in the state 
space, where no constraints will be violated. This implies that the stability region of the 
closed-loop system will be restricted by the constraints. With the control law u = Kx, the 
closed-loop system is written as follows: 

x = Ax with constraints orjjc < 1, k = 1,..., p (9) 

where A = A + BK, ak=ak, k = 1,..,/, a[ = b?K, j = 1,..,r,k = l + j, p = l + r. According 

to the Lyapunov stability theory, the system in Equation (9) is asymptotically stable if and 
only if there exists a matrix P (or Q = P'1) such that 

P>0,    ATP + PA<0    or      Q>0, QA* +AQ<0 (10) 
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Then a stability region S of Equation (9) can be defined as follows: 

S = {x:xTPx<l} (11) 

In addition, all the trajectories of the closed-loop system in Equation (9), starting from states 
in S, will satisfy the constraints if the stability region satisfies the constraints (i.e., 

alx< 1 Vjce S, k=l,...,p). The following Lemma casts the constraints in an LMI form. 

Lemma 4.1: Given an LTI system with the constraints in Equation (9), the stability region S 
defined in Equation (11) satisfies the constraints in Equation (9) if and only if 

aT
kp-xak<\,k=\,...,p. 

Proof: By definition, 5 satisfies the constraints if and only if ccT
kx < 1 Vjce S, k = 1,..., p. 

This is equivalent to maxor^<l, k = l,...,p . Next we will show Taaxalx = JaT
kP~xak , 

Vfc = 1,..., p, which implies the Lemma. To this end, we solve the following nonlinear pro- 

gramming problem for each k - l,...,p: 

maximize  a[x   subject to  xr Px<\ 

Let x* be the optimal solution. Then x* satisfies the Kuhn-Tucker conditions: 

ak - 2APx* = 0, A(l - x*TPx*) = 0, X > 0 

Apparently, there is a solution to x* only if A > 0. Solving the above equations, we obtain 
the following: 

x* = (p~}Jak/4aT
kP-'ak  => maxa[x = aT

kx* = <JaT
kp-'ak 

X€b 

Then we conclude that maxorJx<lif and only if a[P ]OCk <1 for all &=!,...,p. 
xeS 

We now complete the transformation of a linear stabilization problem to a feasible problem 
with the following summary: The plant is stabilizable (i.e., it can be stabilized at the equilib- 
rium without violating the constraints), if there exists a matrix P (or Q = F1) such that the 
following LMIs are satisfied: 

P>0; 

ÄTP + PÄ<0; 

aT
kp-lak<\,k=\,...p. 

or 

ß>0; 

QÄT +ÄQ<0; 

aT
kQcck<l,k=l,...p. 

(12) 
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In the above feasible problem, the solutions to K and P (or ß) are not unique. In fact, there 
are an infinite number of K such that the control u = Kx will stabilize the plant as long as all 

the eigenvalues of A are in the left half of the complex plane. In addition, for each K, there 
may be an infinite number of stability regions defined in Equation (11) satisfying the con- 
straints. Given that a stability region is derived as a safety region, and the larger the safety 
region is, the more freedom an upgraded controller may have to explore new functionalities, 
we will be interested in the largest safety region. This leads to two different cases that will be 
investigated next: (1) Find the largest stability region with a given safety controller, and (2) 
design the safety controller such that the resulting stability region is maximized. 

4.1 Stability Region with a Given Controller 
In this case, we derive the safety region of the plant controlled by a given controller (i.e., 
u = Kx with K given). This is the case when the safety control design and the safety region 
derivation are carried out separately. The safety control could be designed by some methods 
other than LMI, for instance, the linear quadratic regulation (LQR) technique or pole place- 
ment method, when some performance specifications need to be satisfied. It could also be the 
control algorithm that has been used in the past and has been proven reliable. Given that the 
stability region defined in Equation (11) is not unique, we are interested in deriving the larg- 
est S subject to the constraints. Since each stability region geometrically defines an ellipsoid 
in the state space of the plant, the size of a stability region is referred to as the volume of the 
ellipsoid. Hence the stability region in this case will be derived by solving an optimization 
problem: Maximize the volume of the ellipsoid subject to the constraints. 

Since the control gain K is given, matrix A is completely determined, and the optimization 
problem is solved over all feasible matrices ß subject to LMI constraints in Equation (12). 

Since the volume of an ellipsoid given by S = {x: xTPx<\) is proportional to VdetP"1 , 

maximizing the volume is equivalent to minimizing the determinant det ß-1. Hence, a com- 

plete LMI problem for the optimization can be formulated as follows: For a dynamic plant 

x = A~x with constraints a\x < 1, k = 1,..., p, find the matrix ß that 

minimizes     log det ß -1 

subject to      ß > 0; 
—T      — 

QA   +AQ<0; 

aT
kQak<\, k=\,. 
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This problem is solved by Vandenberghe et al in [Vandenberghe 98], and a software imple- 
mentation of the algorithm was developed by Wu and Boyd [Wu 97].6 The following example 
illustrates the derivation of the stability region using the SDPSOL7 software. 

Example 4.1: Consider the simple mechanical plant given in Example 2.1. Suppose the 
physical parameters are given the following values: 

m = 1 kg, x^ = 2 meters, F^ = 1 Newton . 

In addition, the safety controller is designed with the control gain K = [-2, -3]. 

Then the dynamics of the closed-loop plant is described by x = Ax with 

x = , A = 
0      1 

-2   -3 
, and constraints: 

be, <2 

\u\ < 1, or - 2x, - 3x2\ ^ 1 

and the stability region is specified by S = {x: xTQ xx < 1} with Q a 2 x 2 symmetric matrix 

to be determined. Then the LMI problem is formulated as 

minimize   logdetß ' 

subject to   Q > 0; 

QAT +Äß<0; 

aT
kQak<\, k=l,..A, 

where a] =[1/2, 0], a\ =[-1/2, 0], a\ =[-2, -3], and orj =[2, 3]. Solving this problem, 

we obtain the Q matrix as 

Q = 
4.0       -2.6686 

-2.6686     1.8915 

and the stability region displayed in Figure 4. (Note: The dashed lines in Figure 4 indicate the 
constraints.) 

6 The software can be downloaded via anonymous ftp <http://www.stanford.edu/-boyd/sdpsol/> 
and <http://www.stanford.edu/~boyd/maxdet/>. 
7 SDPSOL is a parser/solver for semidefinite programming and determinant maximization problems 
with matrix structure. 
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x, - Xj plot 

Figure 4:    The Stability Region (Solid Line) of the Closed-Loop Plant in Example 4.1 
with Control Law u = -2xl - 3x2 

4.2 Design of the Safety Controller 
In this case, we design the safety controller and construct the corresponding stability region. 
This is the case when the control gain K and the matrix P (or g) are determined jointly. We 
solve an optimization problem over all possible K and P (or g) subject to the constraints such 
that the resulting closed-loop plant is asymptotically stable and the corresponding stability 
region is maximized. The stability region obtained in this case will be the largest one given 
by a quadratic Lyapunov function with respect to all possible Ks that render asymptotic sta- 
bility in the physical plant. Since the control gains are unknown in this case, and the choice 
of them will be restricted by the control constraints, we consider the dynamics systems given 
in Equation (8). Substituting A = A + BK in Equation (12), we obtain the following: 

QAT + AQ + QKTBT + BKQ<0 

By introducing the change of variable Z = KQ, the above condition becomes 

QAT+AQ + ZTBT+BZ<0 

and the constraints b]u < 1  => b]Kx => b]KQKTbj < 1 =» b]ZQrxZTbj < 1, where the 

second step is the result of Lemma 4.1 and the third step is due to the change of variable. 
Using the Schur complements, we convert the last inequality to an LMI form as follows: 

1 
ZTb: 

b]Z 
Q 

>0,    j = l,...,r 
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Then the LMI problem can be formulated as follows: For the dynamic plant x = Ax + Bu with 

control law u = Kx, and the constraints ajx < 1, i = 1,...,/ and b*u < 1, j = l,...,r , find Q 

and Z that 

minimizes logdetÖ-1 

subject to ß>0; 
QAT +AQ + ZTBT +BZ<0; 

ajQa^l, i = l,...,/; 

1        b]Z 
ZTbj       Q 

>0, 7 = 1,...,/ 

Again, this problem can be solved by the approach developed in [Vandenberghe 98] and the 

SDPSOL software. Applying the change of variable, we obtain the control gain K = ZQ'1. 

In some plants, not only is the state constrained, but also the rates of change of state. Such 
constraints are often called rate limits. In this report, we consider the rate limits in the form 

ck x < 1, k e {!,..., n}, and translate them to an LMI as follows: 

cT
kx<\ => (cT

kA + cT
kBK)x<l => (cT

kA + cT
kBK)Q(cT

kA + cT
kBK)T <1 

=> (cT
k A + cT

kBZQ~} )Q (c[A + cT
kBZQ~l f < 1 => (cT

k AQ + cT
kBZ)Q~1 (cT

kAQ + cT
kBZ)T 

1 cT
kAQ + cT

kBZ 

(cT
kAQ + cT

kBZf Q 
>o 

Therefore, the LMI problem for optimization involving rate limits can be stated as follows: 

For the dynamic plant x = Ax + Bu with control law u = Kx and the constraints of x < 1, 

i = l,...,/, fcj«<l, j = l,...,i-, and c[x<\, k = l,...,q, find Q and Zthat 

minimizes       logdetß ' 

subject to        Q > 0; 

QAT +AQ + ZTBT +BZ<0; 

ajQai<l, i = l,...,/; 
1      bT,z\ 
- }     >0,  ;' = l,...,r; 

ZTbj       Q \        J 

1 

_(cT
kAQ + cT

kBZf Q 

cT
kAQ + clBZ 

>0,k = l,...,q. 
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Example 4.2: To illustrate the design of the safety controller together with the derivation of 
the corresponding stability region, we consider Example 2.1 again. In this case, the dynamics 

of the plant are described by x = Ax + Bu with 

x = 
*\ 

,  A = 
"0   f 

, B = 
"0" 

X>y L°   °J 1 
=     ,  and constraints: • 

be, <2 

\u <1 

Let ß be a 2 x 2 symmetric matrix and Z be a 2 x 1 matrix. Then the LMI problem is formu- 

lated as follows: Find ß and Z that 

minimizes logdetß-1 

subject to ß>0; 
QAT + AQ + ZTBT + BZ < 0; 

ajQat<l, i=l,...,/; 

1        fcJZ 
Zrfc;.        ß 

>0, j = \,...,r 

where af =[1/2, 0], orj =[-1/2, 0], bx =1, and b2 =-1. Solving this problem using 

SDPSOL software, we obtain ß and Z as 

Q = 
4.0       -1.2408 

-1.2408     3.4641 
and Z = [-1.1547, -1.0746] 

which determine the control gain: K = ZQ~} = [-0.433, - 0.4653], and the corresponding 

stability region as depicted in Figure 5. (Note: The dashed lines in Figure 5 indicate the con- 

straints of the plants.) 

CMU/SEI-99-TR-018 19 



xl~" 2pk>t 

4 

I 
- 

3 I 
I                                            """ - ^ 

2 ~ -. ^ 
I ^~ '—^-äJ^ 

1 Y >^ 
SO 

\ N.T 
|     v. \ i — ^\ \ 

-1 

^^^-^^^^^ ^^y\ 
-2 " i 

*■ - „                i 
-3 

■■* -* ^       i 
^ - *.    i 

-4 

<     ■     «     i 

-0.5 0 0.5 
-2 <= x, <= 2 

Figure 5:   The Stability Region (Solid Line) for the Designed Safety Controller in 
Example 4.2 

We now make a comparison of the controllers designed in this subsection (referred to as the 
designed controller) and the one given in the previous subsection (referred to as the given 
controller). As mentioned earlier, the designed controller results in the largest stability region 
of the closed-loop system with respect to all the possible control laws for stabilizing linear 
state feedback. Figure 6 shows that its corresponding stability region is indeed larger than the 
one obtained from the given controller. In addition, the performance of the physical plant un- 
der the two controllers is also different. The simulation results in Figure 6 show that, in terms 
of the convergence rate, the performance of the plant under the given controller is much bet- 
ter than when it is controlled by the designed controller, when the plant starts from the state 
[JC, , x2 ] = [1.0, - 0.8] in both cases. The comparisons of the stability region and the closed- 

loop system performance reveal a general tradeoff for linear state feedback control laws; 
namely, the size of the stability region and the performance of the closed-loop system are in- 
versely related. This is an important point in the concept of analytic redundancy with respect 
to the controller design in the Simplex architecture. Specifically, since the safety controller is 
responsible for providing protection, it should be designed so that the upgraded controller can 
explore new functionality in a large domain of the state space. Therefore, the primary goal in 
the safety controller design is to make its operational region as large as possible, and the sec- 
ondary concern may be to increase the performance it yields. On the other hand, the baseline 
controller serves as the complement of the safety controller, so its performance should be the 
first priority, and its operational region becomes a minor issue. In summary, in the examples 
that we considered, the designed controller can serve as the safety controller, and the given 
controller can be used as the baseline controller. An extensive analysis of the tradeoff was 
given in the case study on the inverted pendulum control system; see [Seto 99a]. 
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Stability region - Comparison 
Trajectories x,(t) 

Figure 6:   Comparisons of the Stability Region and Performance of the Plant Under 
the Designed Controller and the Given Controller9 

The above comparisons also motivate a general design strategy for the safety controller and 
baseline controller from an existing control algorithm, which has been used in the past. In 
particular, starting from the existing control algorithm, by adjusting the parameters in the al- 
gorithm such that the operational region is enlarged, we may get a safety controller; by ad- 
justing the parameters to improve the performance of the controlled system, we will obtain a 
baseline controller. If the existing control algorithm is linear state feedback, the adjustment of 
the control gains can be carried out systematically using the LMI approaches that we have 

proposed. 

4.3 Further Improvements on Safety Control Design 
Previously we have seen that the safety controller may result in low performance in the 
closed-loop system. Such a reduced performance may not be acceptable in some systems be- 
cause the recovery by the safety controller may take too much time. In this subsection, we 
will show how to improve the performance with respect to some performance specifications. 
In addition to designing the safety controller to maximize the corresponding stability region 
subject to the constraints, we also require the closed-loop system to satisfy the given specifi- 
cations. The specifications imposed on the performance should be moderate so that the corre- 

sponding stability region remains a reasonably large size. 

The specification that we will consider in this subsection is the closed-loop pole location. 
Depending on how the specification is given, it can have various effects on performance (the 
decay rate, the natural frequencies, etc.). Not only will the performance of the closed-loop 
system be affected by the pole location, but the shape of the resulting stability region will 
change as well. We will present a general approach developed by Chilali and Gahinet 

8 In Figure 6, solid lines represent the result obtained from the designed controller, and dotted lines 
show the result generated by the given controller. Again, the dashed lines indicate the constraints. 
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[Chilali 96] to incorporate the specification into an LMI problem. Refer to [Seto 99b] for 

some examples in aircraft control. 

Definition 4.1: An LMI region is defined as a subset L of the complex plane C, described by 

L = {z:zeC,fL(z)<0} 

where fL(z) = O + z¥ + zVT, and O = Or e Rm*m, V e Rmxm . 

Theorem 4.1: Given an LTI system in the form x = Ax, the system is asymptotically stable 

with poles in an LMI region L if and only if there exists a symmetric matrix Q such that 

Mt(A,ß)<0,   ß>0 

where ML(A, g) = $ ® g + ¥ ® (Aß) + X¥T ® (AQ)T, and ® denotes Kronecker product. 

Corollary 4.1: Given an LTI control system x = Ax + Bu with control law u = Kx, the system 
is asymptotically stable with all the poles in an LMI region L if and only if there exist a 
symmetric matrix Q and a matrix Z with proper dimensions such that 

ML(A,Q,Z)<0,  Q>0 

where ML (A, Q, L) = O ® Q + ¥ ® (Aß + BZ) + *Fr ® (AQ + 5Z)r. Moreover, the control 

gain is determined by K = ZQ'1. 

Theorem 4.1 and Corollary 4.1 give the LMI conditions for the system, with or without con- 
trol, to be asymptotically stable with the specified pole location. When the system involves 
constraints, additional LMI constraints such as we presented in the previous subsection 
should be considered. Most of the often-used pole location specifications can be cast as LMI 
regions defined in Definition 4.1 and incorporated into the LMI conditions for stability. For 
example, suppose the poles of a completely controllable system x = Ax + Bu are required to 

be inside a disk of radius r and center (-d, 0), d > 0, in the complex plane. Let a complex pole 
be denoted by z = x + jy. Then the specified region in the complex plane is given by 

(x + d)2 + y2 <r2,or (z + d)(z + d)< r2 because x = (z + z)/2, x2 + y2 = zz . Applying 

Schur complements, we obtain the LMI region given as 

hiz) = 
-r     z + d 

z+d     -r 

-r d] \0     !1 \°   °1 = + 7 + z [d — r [o oj [l   OJ 
= 0 + zT + ?Fr 

and the LMI conditions for stability as 
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MAA,Q) = 
-rQ     dQ 

dQ    -rQ 

[0   AQ] r o o~ 
+ + ~ 

0     0 QAT 0 

-rQ       AQ + dQ 

QAT+dQ      -rQ 
< 0, Ö > 0 

Another important specification is related to the decay rate, namely the rate of the trajectories 
of the closed-loop system converging to the equilibrium. Such a rate requirement can be 
translated to the pole location by making all the poles of the closed-loop system located at the 
left side of the vertical line x = -d, d > 0. Then all the trajectories of the closed-loop system 
will converge to the equilibrium at rates no less then d. The specification of the pole location 
in this case is given by x < -d, or fL (z) = 2d + z + Z < 0. Then the LMI conditions in Theo- 

rem 4.1 are given by 

ML(A,Q) = 2dQ + AQ + QAT <0, Q>0 

Incorporating the constraints on pole location into the stabilization problem will improve the 
performance of the closed-loop system. This has been demonstrated in a case study on an 
aircraft auto-landing control system [Seto 99b]. An extensive study on pole placement in the 

context of LMI is also reported in [Chilali 96]. 
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5 Conclusions 

In this report, we addressed the semantic fault tolerance issue in the Simplex architecture. 
Fault detection and recovery were established with respect to the safety of the physical sys- 
tem under control. Specifically, faults are detected by checking the safety of the physical 
plant against a predefined safety region, and the recovery is guaranteed by the safety con- 
troller. When the physical plant is operated around an equilibrium, the safety controller is 
designed to stabilize the system at the equilibrium, and the safety region is defined as the sta- 
bility region of the physical plant under the safety controller. By linearizing the plant at the 
equilibrium, a linear approximation of the plant is obtained. Based on this linear model of the 
plant, several LMI-based approaches are presented to (1) systematically derive the largest 
stability region of the plant under a given controller and (2) systematically design the safety 
controller and derive the corresponding safety region. Figure 7 shows a flow chart of this 
complete procedure for developing the semantic fault tolerance mechanism using LMI. 
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Establish a mathematical model for the physical plant in 
the form x = f(x, u) with an equilibrium state at (xe, ue) 

Linearize the plant model at the equilibrium 
state to get a linear model: x = Ax + Bu 

Yes No 

Formulate an optimization problem 
in LMIs: find matrix Q such that the 
stability region is maximized. 

Formulate an optimization problem in 
LMIs: find matrices Q and Z such that 
the stability region is maximized. 

Solve for Q and obtain the stability 
region S = {c: xTQ~'x<\\ 

I 
Solve for Q and Z, and obtain the 
stability region S = {c: xT QTl x < l} 

and control gain K = ZQ   . 

Test in the real operation. 

No 

DONE 

Check the model; 
Adjust the parameters in liner 
model;  
Tighten the constraints or 
introduce more constraints. 

Figure 7:   A Development Cycle for Semantic Fault Tolerance Mechanism Using 
LMI 
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summary of the procedure for deriving the safety check and safety controller for a given application. 
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